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Abstract
The thermalization and photoluminescence (PL) dynamics of indirect excitons
in GaAs/AlGaAs coupled quantum wells (QWs) at very low bath temperature,
Tb < 1 K, are analysed theoretically and modelled numerically in order to
clarify the origin of the recently observed sharp increase of the PL signal (PL-
jump) right after a high-intensity excitation pulse. We conclude that the PL-
jump effect is mainly due to classical cooling of indirect excitons after the pump
pulse, which heats the exciton system. Thus the effect cannot unambiguously be
attributed to bosonic stimulation of the scattering processes into the ground-state
mode p‖ = 0. It is argued that the narrowing effect, i.e. an effective screening of
in-plane QW disorder by dipole–dipole interacting indirect excitons, naturally
explains the observed strongly nonlinear dependence of the PL rise time
on the pump intensity. We also discuss and analyse an evaporative optical
heating/cooling effect: the change of the effective temperature T of indirect
excitons, due to their resonant optical decay.

1. Introduction

At present there are a lot of research activities searching for Bose–Einstein condensation
(BEC) or BEC-like phase transitions of QW excitons or microcavity polaritons in GaAs-
based nanostructures [1]. A system of indirect excitons in GaAs/AlGaAs coupled quantum
wells is a unique candidate for the experimental realization of nonclassical, Bose–Einstein
(BE) statistics for quasi-two-dimensional (quasi-2D) composite bosons with a well-defined
in-plane momentum of the translational motion. This is due to a long radiative lifetime of the
particles and effective screening of QW disorder by dipole–dipole interacting indirect excitons.

For a dilute (quasi-) equilibrium gas of QW excitons the degeneracy temperature T0 and
chemical potential µ2d are given by

T0 = 2π

g

(
h̄2

Mx

)
n2d and µ2d = kBT ln

(
1 − e−T0/T

)
, (1)
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where g, Mx, n2d and T are the spin-degeneracy factor, in-plane translational mass,
concentration and temperature of excitons, respectively. For indirect excitons in GaAs coupled
QWs the exchange interaction is extremely weak, so that g = 4. In the presence of a strong
magnetic field H⊥ applied perpendicularly to the QW plane (the case we also analyse in this
paper), the in-plane exciton mass becomes H⊥-dependent, Mx = Mx(H⊥), and removal of the
spin degeneracy occurs, i.e. g = 1. A crossover from classical to quantum, BE statistics takes
place at T � T0. The distribution function of QW excitons, normalized to give a total number
of particles, is

NE = 1 − e−T0/T

eE/kB T + e−T0/T − 1
, (2)

where E = (h̄2 p2
‖)/(2Mx) and h̄p‖ is the in-plane momentum. According to equation (2), the

occupation number of the ground-state mode p‖ = 0 is

Np‖=0 ≡ NE=0 = eT0/T − 1. (3)

For T � T0, equations (1) and (3) yield µ2d � −kBT e−T0/T → 0 and exponential, explosive
population of the ground state mode with decreasing T . This can probably initiate BEC (in a
finite-size, mesoscopic in-plane trap) or BEC-like phase transitions.

A strong increase of the PL signal from nonresonantly photogenerated indirect excitons,
right after a rectangular pump pulse, was observed in optical experiments with GaAs coupled
QWs at 0.05 K � Tb � 15 K [2, 3]. In particular, for the extremely low cryostat temperature
Tb = 50 mK, reported in [3], a phonon vacuum is nearly realized for LA-phonons involved
in the thermalization of indirect excitons. The above effect of transient rise of resonant
photoluminescence from indirect excitons is called a PL-jump. The observed nonlinear
behaviour of the PL-jump, against the optical pump intensity, has mainly been interpreted
in terms of stimulated scattering of excitons into the low-energy states with p‖ � 0 [3].
According to the experiments, the PL-jump effect disappears with increasing bath temperature
Tb and with decreasing maximum density of indirect excitons, nmax

2d (i.e. with decreasing pump
intensity).

Indirect magnetoexcitons in GaAs/AlGaAs coupled QWs [4–6] provide us with an
additional degree of freedom in studying the relaxation and PL dynamics. In particular, the
in-plane translational mass of indirect excitons can be considerably enhanced by applying a
strong magnetic field perpendicular to the quantum wells: Mx = Mx(H⊥) increases with
increasing H⊥. According to the experiments [2, 3], the PL-jump contrast decreases with
increasing H⊥.

In the first optical experiments [7, 8] with indirect excitons in GaAs coupled QWs the
inhomogeneous linewidth of the PL signal was large, h̄�inhom � 3–6 meV, i.e. even larger than
the exciton binding energy, εx = 3–5 meV [9]. In current high-quality structures an average
inhomogeneous broadening is h̄�inhom � 0.7–1 meV, i.e. much less than εx. As it is shown
in [10] and in the present paper, �inhom can further be considerably reduced for n2d � 1010 cm−2,
due to the screening of QW disorder by dipole–dipole interacting indirect excitons. This
justifies the thermodynamic description with equations (1)–(3), i.e. the description given in
terms of a well-defined in-plane momentum p‖ even for low-energy indirect excitons.

In this paper we study relaxation and PL dynamics of indirect excitons in GaAs-based
coupled QWs at very low Tb, aiming

(i) to understand the origin of the PL-jump and, in particular, to clarify to what extent this
effect can be attributed to bosonic stimulation of exciton scattering,

(ii) to discuss the screening of QW disorder by dipole–dipole interacting excitons and to show
that for n2d � 1010 cm−2 and low T the in-plane random potential is strongly weakened,
and
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Figure 1. Schematic of the single-particle energies relevant to the relaxation and PL dynamics
of indirect excitons in GaAs/AlGaAs coupled quantum wells. The exciton dispersion is h̄ωx =
h̄ωt + E(p‖), where E = (h̄2 p2‖)/(2Mx) is the exciton kinetic energy (solid curve); the photon
dispersion, h̄ωγ −h̄ωt = (h̄cp)/

√
εb−h̄ωt , is shown by the dashed lines; the LA-phonon dispersion,

h̄ωLA = h̄vs p, is shown by the dash–dotted lines. The low-energy exciton states, E � Eγ ,
which are resonantly coupled with the bulk photon modes, are marked by the bold solid curve.
The following parameters relevant to GaAs QWs are used in the numerical calculations: vs =
3.7 × 105 cm s−1 and Mx = 0.3 m0 (m0 is the free electron mass), so that p0 � 1.92 × 105 cm−1

and E0 � 46.7 µeV (E0/kB � 0.54 K); εb = 12.9 and h̄ωx(p‖ = 0) = h̄ωt = 1.55 eV, so that
k0 � 2.82 × 105 cm−1 and Eγ � 101 µeV (Eγ /kB � 1.17 K).

(iii) to propose and analyse an evaporative optical heating/cooling mechanism for QW excitons.

The underlying physical picture we use refers to the relaxation thermodynamics [11] and
assumes a hierarchy of interactions, i.e. that the QW exciton—QW exciton scattering is
more efficient than the interaction of QW excitons with bulk LA-phonons. This means that
thermalization of QW excitons occurs through the quasi-equilibrium thermodynamic states,
which are completely characterized by the effective exciton temperature T and concentration
n2d (or degeneracy temperature T0). The relaxation thermodynamics of indirect excitons deals
with 109 cm−2 � n2d � 1011 cm−2 [11]. These concentrations are relevant to the optical
experiments [2, 3].

Apart from the bath temperature Tb, there are four control energy parameters in the
thermalization and PL dynamics of indirect excitons: kBT , kBT0 ∝ n2d, E0 and Eγ (see
figure 1). Bulk LA-phonons couple the ground-state mode p‖ = 0 with the exciton energy
states E � E0 = h̄vs p0 = 2Mxv

2
s , i.e. with the exciton energy states which are located inside

the LA-phonon dispersion cone. Here vs is the longitudinal sound velocity. Only low-energy
indirect excitons, 0 � E � Eγ , from the radiative zone |p‖| � k0 can decay resonantly into
the bulk photon modes. The photon wavevector k0 is given by k0 = (ωt

√
εb)/c, where εb is

the background dielectric constant (see also the caption of figure 1).
In section 2 we discuss LA-phonon-assisted relaxation thermodynamics of indirect

excitons for low bath temperatures, kBT � E0. Both classical and quantum mechanisms of
slowing down of the thermalization processes are discussed. In section 3 the resonant optical
decay of low-energy indirect excitons is considered with detailed analysis of the radiative decay
of ultra-cold particles, when kBT � Eγ and/or T � T0. By analysing the quantum diffusion
equation, in section 4 we demonstrate an effective screening of interface long-range-correlated
QW disorder, i.e. the narrowing effect, by dipole–dipole interacting indirect excitons. In
section 5 the PL-jump effect is modelled and attributed to the combination of nearly classical
cooling of indirect excitons after the pump pulse and the narrowing effect. In section 6
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the evaporative optical heating/cooling processes are analysed for indirect excitons in GaAs
coupled QWs. Finally section 7 summarizes our conclusions.

2. Relaxation thermodynamics of QW excitons at low temperatures

The relaxation thermodynamics of QW excitons is given by [11]

∂

∂ t
T = −2π

τsc

(
T 2

T0

)(
1 − e−T0/T

) ∫ ∞

1
dε ε

√
ε

ε − 1

∣∣∣Fz

(
a
√

ε(ε − 1)
)∣∣∣2

× eεE0/kB Tb − eεE0/kB T

(eεE0/kB T + e−T0/T − 1)

1

(eεE0/kB Tb − 1)
, (4)

where τsc = (π2h̄4ρ)/(D2
dp M3

x vs) is the characteristic scattering time, ρ is the crystal density
and Ddp is the deformation potential of exciton–LA-phonon interaction. The form-factor
Fz(χ) = [sin(χ)/χ][eiχ/(1 − χ2/π2)] refers to an infinite rectangular QW confinement
potential. This function describes the relaxation of the momentum conservation law in the
z-direction (the QW growth direction) and characterizes a spectral band of bulk LA-phonons,
which effectively interact with QW excitons. The dimensionless parameter a ∼ 1 is given by
a = (dz Mxvs)/h̄, where dz is the QW thickness.

Equation (4) describes the thermalization dynamics, T = T (t), of QW excitons from the
initial effective temperature Ti = T (t = 0) to the bath temperature Tb, under the assumption
that the total number of particles is conserved. For a classical gas of QW excitons, when T and
Tb are much higher than the degeneracy temperature T0, equation (4) gives a thermalization
time τ cl

th of 2–3 orders of magnitude less than that in bulk GaAs. The effective cooling of QW
excitons in the presence of a bath of bulk thermal phonons is due to the relaxation of momentum
conservation in the z-direction (see the form-factor Fz on the right-hand side of equation (4)):
the ground-state mode p‖ = 0 of QW excitons couples to the continuum exciton states E � E0

rather than to the single energy state E = E0 as occurs in bulk materials. For kBTb � E0, the
thermalization time τ cl

th is in a few picoseconds timescale, and works in favour of the effective
population of the low-energy exciton states. However, at low bath temperatures kBTb � E0, τ cl

th
increases exponentially with decreasing Tb, i.e. τ cl

th ∝ exp(E0/kBTb). This effect of classical
slowing down of the relaxation kinetics is due to the exponentially small occupation of the
exciton states E � E0, which can populate the ground-state mode by LA-phonon-assisted
Stokes scattering (excitons with energies E � E0/4 cannot emit LA-phonons at all). For
well-developed Bose–Einstein statistics, when T � T0, equation (4) yields quantum slowing
down of the thermalization process, so that τ

q
th � (T0/T )τ cl

th [11].
Linearization of the thermodynamic equation (4), which deals with the described above

exponential thermalization, T = Tb + (Ti − Tb)e−t/τth , does not hold when |T − Tb|/Tb �
kBTb/E0 and, in particular, for Tb = 0. For zero bath temperature equation (4) reduces to

∂

∂ t
T = −2π

τsc

(
T 2

T0

)(
1 − e−T0/T

) ∫ ∞

1
dε ε

√
ε

ε − 1

|Fz(a
√

ε(ε − 1))|2
eεE0/kB T + e−T0/T − 1

. (5)

Equation (5), which describes how QW excitons cool down towards Tb = 0, can further be
simplified for kBT less than E0 and kBT0. In this case one gets

∂

∂ t
T = −2π3/2

τsc

(
T 2

T0

)(
kBT

E0

)1/2

e−E0/kB T . (6)

The right-hand side of equation (6) is proportional to e−E0/kB T (classical slowing down)
and inversely proportional to T0 (quantum slowing down). In the dimensionless variables,
temperature T̃ = kBT/E0 and time τ = (2π3/2 E0t)/(kBT0τsc), equation (6) reads as
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Figure 2. Thermalization dynamics, T = T (t), of QW excitons at Tb = 0 K. The initial exciton
temperature Ti = T (t = 0) = 3 K; n2d = 109 cm−2 (dashed curve), 1010 cm−2 (solid curve)
and 1011 cm−2 (dash–dotted curve). The degeneracy temperature T0 ∝ n2d is equal to 0.46 K for
n2d = 1010 cm−2. In addition to the GaAs parameters listed in the caption of figure 1, we use
dz = 8 nm, Ddp = 8.2 eV and ρ = 5.3 g cm−3. Inset: population dynamics of the ground-state
mode, NE=0 = NE=0(t).

dT̃ /dτ = −T̃ 5/2e−1/T̃ . Thus, the solution T = T (t) of equation (6) is given by the
transcendental equation:

F(T̃ = kBT/E0) = τ + Ci = 2π3/2

τsc

(
E0

kBT0

)
t + Ci, (7)

where F(x) = [1/
√

x − Ds(1/
√

x)]e1/x and Ds(y) = e−y2 ∫ y
0 dt et2

is Dawson’s integral.
The integration constant Ci is determined by the initial condition Ti = T (t = 0) � E0/kB,
i.e. Ci = F(kBTi/E0).

According to equation (7), for t � [(kBT0)/(2π3/2 E0)]τsc the asymptotic solution of
equation (6) is

kBT (t) = E0

ln[(2π3/2 E0t)/(kBT0τsc)]
, (8)

i.e. T̃ (τ ) = 1/ ln(τ ) for τ � 1. Both factors, classical and quantum slowing down of the
relaxation kinetics, together with the need to accumulate a huge number of QW excitons in
the ground-state mode p‖ = 0, due to BE statistics, are responsible for the nonexponential
and extremely slow thermalization law 1/ ln(τ ) for Tb = 0. The corresponding occupation
kinetics of the ground-state mode for τ � 1 is given by

NE=0(τ ) = τ kB T0/E0 . (9)

The nonexponential population law (9) of the ground-state mode E = 0 is similar to that
found for thermalization of excitons in bulk semiconductors at T � Tc [12, 13]. Equation (9)
is also consistent with a generic solution of the LA-phonon-assisted relaxation kinetics of QW
excitons at low densities (n2d � 109 cm−2 for GaAs QWs) [14].

The results of numerical simulations of the thermalization dynamics at Tb = 0, calculated
with equation (5), are plotted in figure 2 for n2d = 109, 1010 and 1011 cm−2, and for the same
initial effective temperature Ti = 3 K. After the first transient relaxation of relatively hot QW
excitons, which lasts a few nanoseconds, the thermalization dynamics reveals the density-
dependent T ∼ 1/ ln(t) law given by equation (8). According to equation (9), the power-law
population dynamics of the ground-state mode p‖ = 0 becomes particularly effective for
kBT0 > E0 (see the inset of figure 2), i.e. in the high-density limit.
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At very large delay times the thermalization law becomes 1/t [15], and starts to dominate
over the 1/ ln(t) relaxation dynamics described above. The 1/t thermalization law is due to the
exciton–exciton scattering processes, which are treated beyond the relaxation thermodynamics
used in our study. Furthermore, the 1/ ln(t) (and later on, 1/t) thermalization dynamics cannot
be completely realized in GaAs coupled quantum wells, due to the continuous optical decay
of low-energy QW excitons. The latter usually deals with a 10 ns timescale [7, 8]. For the
same reason, as we demonstrate below, the occupation numbers NE=0 > 100–200 are highly
unlikely to occur. There is also no need to keep the cryostat temperature at extremely low
Tb = 50 mK, because within the optical lifetime of QW excitons, τopt , the effective exciton
temperature T is far above 0.1 K (see figure 2). For example, for n2d = 1011 cm−2 one has
T (t = 10 ns) � 0.59 K.

3. Optical decay of statistically-degenerate QW excitons

In high-quality QWs a quasi-2D exciton can emit a bulk photon only from the low-energy,
radiative modes, which are located inside the photon cone k = k(ω) = (

√
εbω)/c (ω is the

frequency of the light field). Thus the radiative zone of QW excitons is given by p‖ � k0, where
k0 = k(ωt) corresponds to the crossover point between the photon and exciton dispersions (see
figure 1). Similar to the thermalization kinetics, the optical evaporation of QW excitons is also
sensitive to Bose–Einstein statistics of the low-energy radiative states [11]. The effective
radiative decay rate of BE-distributed QW excitons, �opt, is given by

�opt ≡ 1

τopt
= 1

2τR

(
Eγ

kBT0

) ∫ 1

0

1 + z2

Ae−z2 Eγ /kB T − 1
dz, (10)

where

A = A(T, T0) = eEγ /kB T

1 − e−T0/T
, (11)

and τR is the intrinsic radiative lifetime of ground-state QW excitons with in-plane momentum
h̄p‖ = 0. Equation (10) takes into account the equal probabilities of the in-plane T- and
L-polarizations of optically-active QW excitons (or, in other words, the equal populations of
the σ +- and σ−-polarized QW exciton states). The two-fold optically-inactive, ‘dark’ QW
exciton states are included in equation (10) through the degeneracy temperature T0, which is
proportional to the total concentration n2d of QW excitons.

For the high-temperature limit, when kBT is much larger than kBT0 and Eγ , the QW
excitons are Maxwell–Boltzmann distributed (see equation (2)), and equation (10) yields the
effective radiative lifetime τ cl

opt:

τ cl
opt =

(
3

2

kBT

Eγ

)
τR +

(
9

10
− 3

4

kBT0

Eγ

)
τR. (12)

The first, leading term on the right-hand side of equation (12) is the well-known estimate of
the optical lifetime, τopt = τ

cl(0)
opt = (3kBT τR)/(2Eγ ), in the limit of well-developed classical

statistics of QW excitons. The optical lifetime τ
cl(0)
opt is much larger than the intrinsic radiative

lifetime τR, because for T � T0, Eγ /kB only a small fraction of QW excitons occupy the
radiative modes p‖ � k0. The temperature-independent correction to τ cl

opt, given by the
second term on the right-hand side of equation (12), consists of the concentration-independent
and concentration-dependent contributions of opposite signs. The concentration-dependent
contribution, which is proportional to the degeneracy temperature T0, originates from BE
statistics of QW excitons. Thus the influence of nonclassical statistics can be traced in the
photoluminescence of QW excitons even for high temperatures.
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Figure 3. The optical decay time of excitons in GaAs
coupled QWs, τopt, against the cryostat (bath) temperature
Tb: numerical evaluation of equation (10) (solid curve) and
experimental data (circles with error bars). The intrinsic
radiative lifetime of QW excitons is given by τR = 6.75 ns.
The density of QW excitons, n2d = 2 × 1010 cm−2,
used in the numerical calculations, is relevant to the pump
intensities used in the experiments [2, 3]. From [16].

For strongly statistically-degenerate quasi-2D excitons, when T � T0, equation (10)
yields the quantum limit of �opt:

�
q
opt =

[
1 − T

T0
+

T

T0
ln

(
4Eγ

kBT

)]
�0

2
, (13)

where �0 = 1/τR. The second and third terms in the square brackets on the right-hand side
of equation (13) are small temperature-dependent corrections, i.e. �

q
opt(T → 0) → �0/2.

An accumulation of QW excitons with occupation numbers NE � 1 in close vicinity of the
ground-state mode p‖ = 0 gives rise to the above limit. Thus, the optical decay time of highly-
degenerate QW excitons is given by τ

q
opt(T → 0) → 2τR. The factor 2 in the above expressions

for �
q
opt and τ

q
opt is due to the optically-inactive QW excitons. For T � Eγ /kB � 1 K (for

GaAs QWs with no magnetic field applied to the structure), the effective radiative lifetime τopt

approaches 2τR nearly independently of the degree of quantum degeneracy.
Figure 3 shows the comparison of τopt, calculated with equation (10), and the optical

lifetime of indirect excitons in GaAs coupled QWs,measured at very low cryostat temperatures,
50 mK � Tb � 2 K [16]. The calculated dependence τopt = τopt(Tb) does reproduce in detail
the measured values of τopt. In particular, τopt � 2τR for Tb � Eγ /kB � 1 K and τopt ∝ Tb

for Tb > 1 K, according to equation (12). Even a local minimum of τopt(Tb), described
by equation (13) for statistically-degenerate QW excitons, has been observed at low cryostat
temperature Tb � 0.5 K (see figure 3). In the numerical evaluations of equation (10) we assume
T = Tb and n2d = 2 × 1010 cm−2. The only critical fit parameter used in the calculations is
the intrinsic radiative lifetime: τR = 6.75 ns. In fact the experiments with low Tb � Eγ /kB

allow us to measure the intrinsic radiative lifetime τR of indirect excitons.

4. Screening of the QW interface disorder by indirect excitons

The inhomogeneous linewidth of the PL signal associated with the resonant optical decay of
indirect excitons in high-quality GaAs/AlGaAs coupled QWs, h̄�inhom � 0.7–1 meV [2, 3], is
still much larger than the homogeneous linewidth h̄�hom = Eγ � 0.1 meV. The above values
of �inhom and �hom are relevant to indirect excitons at low, helium bath temperatures Tb and
low concentrations n2d � 109 cm−2. Because h̄�inhom is larger than the control parameters
of the model, E0 and Eγ , a natural question arises as to what extent our theory is adequate to
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explain the experimental results. In this section we discuss the narrowing effect—an effective
screening of QW disorder by dipole–dipole interacting indirect excitons. The in-plane diffusion
of indirect excitons in the presence of a spatially-fluctuating QW potential gives rise to the
screening effect. A quantum diffusion equation,analysed below, describes the narrowing effect
for long-range-correlated disorder.

The nonlinear quantum diffusion equation for indirect excitons in (GaAs) coupled QWs
is given by [10]

∂n2d

∂ t
= ∇

[
D(2d)

x ∇n2d +
2

π

(
Mx

h̄2

) (
eT0/T − 1

)
D(2d)

x ∇ (
u0n2d + UQW

)] − �optn2d + �, (14)

where �opt = 1/τopt is given by equation (10), D(2d)
x = D(2d)

x (T, T0) is the diffusion coefficient
of QW excitons, � is the generation rate of excitons, UQW is the in-plane QW potential, and
the operator ∇ is defined in terms of the in-plane coordinate, r‖ = {x, y}. The in-plane
random potential UQW = Urand(r‖) is due to the QW thickness and alloy fluctuations. The
drift motion of QW excitons is proportional to ∇Ueff , where Ueff = u0n2d + UQW (see the last
term in the square brackets on the right-hand side of equation (14)). The mean-field energy,
Umf = u0n2d, is due to the well-defined dipole–dipole repulsive interaction of indirect excitons
(the indirect excitons can be interpreted as an in-plane ensemble of identical dipoles oriented
normal to the QW structure). The potential u0 is not sensitive to the internal spin structure
of indirect excitons and is given by u0 = (2π h̄2dz)/(µxa(2d)

x ) = 4π(e2/εb)dz . Here µx and
a(2d)

x = (h̄2εb)/(2µxe2) are the in-plane reduced mass and Bohr radius of excitons,respectively.
It is the mean-field interaction energy u0n2d that is responsible for the screening effect. The
underlying physical picture is that the QW excitons tend to accumulate near the minima of
Urand(r‖) (local increase of u0n2d(r‖)) and to avoid the maxima of Urand(r‖) (local decrease of
u0n2d(r‖)). Note that for the GaAs coupled QW structures, used in the experiments [2, 3], one
estimates U (0)

mf = u0n(0)

2d � 1.4–1.6 meV for n(0)

2d = 1010 cm−2.
In order to analyse the narrowing effect analytically, we put �opt = 0 (no optical decay

of excitons) and � = 0 (no source of excitons). In this case, a steady-state solution n2d of
equation (14) yields for average concentrations such that n(0)

2d � |Urand(r‖)|/u0:

Ueff = u0n(0)

2d +
Urand(r‖)

1 + [(2Mx)/(π h̄2)](eT0/T − 1)u0
, (15)

where Ueff = Urand(r‖)+u0n2d(r‖) is the effective, screened in-plane potential. The narrowing
effect for the long-range-correlated random potential is described by the second term on the
right-hand side of equation (15). For u0n(0)

2d � |Urand| the denominator of the second term
is much larger than unity. In particular, for classical statistics, when T � T0, equations (14)
and (15) yield

n2d(r‖) = n(0)

2d − Urand(r‖)n(0)

2d

kBT + u0n(0)

2d

, Ueff(r‖) = u0n(0)

2d +
Urand(r‖)kBT

kBT + u0n(0)

2d

. (16)

For u0n(0)

2d � kBT , equation (16) describes strong suppression of the potential fluctuations:
Urand(r‖) → κUrand(r‖), where κ = (kBT )/(u0n(0)

2d ) � 1. Due to the exponential function
exp(T0/T ) on the right-hand side of equation (15), the screening effect becomes particularly
strong in the quantum regime, when T0 � T . Figure 4 shows the effective potential Ueff(x) and
concentration of excitons n2d(x), calculated with equation (14) for a model one-dimensional
long-range-correlated random potential Urand(x) (bold solid curves in figure 4), and realistic
values of n(0)

2d , D(2d)
x , T , τopt and |Urand| ∼ 0.5 meV. According to figure 4, for the average

density n(0)

2d � 1010 cm−2 and exciton temperature T ∼ 1 K the long-range-correlated in-plane
disorder is already drastically screened and relaxed.
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Figure 4. Temperature dependence of the narrowing effect, due to screening of long-range-
correlated disorder by dipole–dipole interacting indirect excitons in GaAs coupled QWs. The
diffusion coefficient D(2d)

x = 100 cm2 s−1, the optical lifetime τopt = 20 ns and the generation rate

� = 5 × 108 cm−2 ns−1, so that the average concentration of indirect excitons n(0)
2d � 1010 cm−2.

(a) The effective potential Ueff(x) = Urand(x) + u0n2d(x) and (b) local concentration n2d(x)

against the in-plane coordinate x . The exciton temperature is T = 10 K (dotted curves), 1 K
(dashed curves) and 0.1 K (thin solid curves). In both figures the input, unscreened potential
Urand(x) is shown by bold solid curves (note that in the upper figure Urand is shifted by +1 meV
and Ueff is shifted by −u0n(0)

2d + 1 meV � −0.66 meV, and in the lower figure Urand is plotted in
au). The n2d-dependence of the screening effect is shown in figure 2 of [10].

The mean-field potential Umf = u0n2d also gives rise to the narrowing effect for mid-range-
correlated in-plane disorder (length scale of a few a(2d)

x ). In this case the dipole–dipole repulsive
interaction considerably decreases the localization energy of indirect excitons in a mesoscopic
in-plane trap. Short-range 2D disorder, which can be described in terms of a random contact
potential, is also strongly suppressed by interacting bosons [17]. Thus we conclude that in
high-quality GaAs-based coupled QWs the in-plane random potential UQW = Urand of any
correlation length is effectively screened and practically removed at n(0)

2d � 1010 cm−2, due to
the dipole–dipole repulsive interaction of indirect excitons. In this case the in-plane momentum
h̄p‖ becomes a good quantum number even for very low-energy indirect excitons. Thus the
phonon-assisted relaxation and photoluminescence kinetics, which we study in this paper in
terms of well-defined p‖, are adequate for explanation and modelling of the experiments on
statistically-degenerate excitons in GaAs/AlGaAs coupled QWs [2, 3].

5. The PL-jump: origin and modelling

The relaxation and PL dynamics of photogenerated indirect excitons are given by

∂

∂ t
n2d = − n2d

τopt
+ �(t),

∂

∂ t
T =

(
∂T

∂ t

)
n2d

+ ST(t), (17)



S3638 A L Ivanov

where τopt = τopt(T, T0) = 1/�opt is given by equation (10), �(t) is the generation rate
of indirect excitons by an optical pulse, and (∂T/∂ t)n2d is given by the right-hand side of
equation (4). The term ST, which describes the change of T due to the nonresonant optical
pump and resonant radiative decay of indirect excitons, is

ST = (Einc − kBT I2 Ã)�T0 − [Eγ /τE
opt − (kBT I2 Ã)/τopt]T0

2kBT I1 − kBT0 I2 Ã
, (18)

where Ã = Ã(T, T0) = e−T0/T /(1 − e−T0/T )2, �T0 = [(π h̄2)/(2Mx)]�(t) and the integrals
I1,2 = I1,2(T, T0) are given by

I1 = (1 − e−T0/T )

∫ ∞

0

z dz

ez + e−T0/T − 1
,

I2 = (1 − e−T0/T )2
∫ ∞

0

zez dz

(ez + e−T0/T − 1)2
.

(19)

The characteristic time τE
opt of the energy relaxation, due to the resonant optical decay of QW

excitons, is determined by

1

τE
opt

= 1

2τR

(
Eγ

kBT0

) ∫ 1

0

1 − z4

Ae−z2 Eγ /kB T − 1
dz, (20)

where A is given by equation (11).
The experiments [2, 3] deal with an in-plane large area of the GaAs coupled QWs

homogeneously excited by a rectangular optical pulse of about 50 ns duration. The optical
excitation is nonresonant, i.e. the pump photon energy h̄ωpulse � 1.85 eV is much larger than
the indirect QW exciton energy h̄ωt � 1.54–1.56 eV. Thus the photogeneration of indirect
excitons is a secondary process, due either to quantum tunnelling of direct QW excitons into
the energetically more favourable states of indirect excitons, or to a resonant Coulomb binding
of initially photogenerated electrons and holes after they complete an LO-phonon cascade
emission. In both cases the excess energy of created (incoming), hot indirect excitons is large,
Einc � 10–30 meV. In equations (17) and (18) we assume a monoenergetic injection of indirect
excitons. A contribution to ST (see equation (18)), which is proportional to Einc, has positive
sign and describes a heating process by incoming, hot indirect excitons. The rest of ST can
either be positive or negative and deals with heating or cooling, due to the resonant optical
evaporation of indirect excitons.

In figure 5 we plot the resonant PL signal from indirect excitons, calculated with
equations (17) for Tb = 0.05 K and a rectangular excitation pulse of τpulse = 47 ns.
The parameters used in the calculations correspond to those relevant to the optical
experiments [2, 3]. The generation rate � = 1.3×109 cm−2 ns−1 (solid curve in figure 5) gives
at the end of the excitation pulse the maximum density nmax

2d � 2.9 × 1010 cm−2. The latter
value reproduces nmax

2d generated by using a maximum laser intensity: in the experiments, nmax
2d

can be estimated by attributing a blue shift of the PL line to the mean-field energy Umf = u0n2d.
A still further increase of the pump rate, in the numerical modelling with equations (17), to
� = 4.8×109 cm−2 ns−1 (dash–dotted curve in figure 5) yields nmax

2d � 9.5×1010 cm−2. The
PL-jump, observed in the experiments [2, 3], is clearly seen in the calculated PL dynamics,
IPL = IPL(t), plotted in figure 5. In figure 6 we show the time dependence of n2d, τopt, NE=0 and
T , modelled with equations (10), (17)–(20) for Tb = 0.05 K and � = 1.3×109 cm−2 ns−1. The
solid (dashed) curves refer to H⊥ = 0 (H⊥ = 14 T). A strong magnetic field of H⊥ = 14 T,
applied perpendicularly to the GaAs QW structure, increases the in-plane mass of indirect
excitons to Mx(H⊥ = 14 T) � 7.1Mx � 2.1 m0, according to the estimate done by using
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Figure 5. Resonant photoluminescence of indirect excitons against time t . IPL is calculated from
low-energy QW excitons with |p‖| � pPL‖ � 0.77k0. The rectangular excitation pulse of duration
τpulse = 47 ns starts at t0 = 28 ns. The bath temperature Tb = 50 mK, the intrinsic radiative
lifetime τR = 6.75 ns, the energy of hot (incoming) photogenerated excitons Einc = 17.2 meV
(Einc/kB = 200 K) and the other parameters of the GaAs coupled QW are the same as for figure 2.
The pump rate � = 1.3 × 109 cm−2 ns−1 (solid curve) yields nmax

2d = 2.87 × 1010 cm−2, and
� = 4.8×109 cm−2 ns−1 (dash–dotted curve) gives nmax

2d = 9.51×1010 cm−2. Inset: the effective
temperature of indirect excitons at the end of the excitation pulse, Tpulse = T (t = t0 +τpulse) (dash–
dotted curve), the rise rate of the PL signal, 1/τrise = [d ln(IPL)/dt]|t=t0 +τpulse (solid curve), and
the PL jump contrast, δPL = �IPL/IPL, against nmax

2d = n2d(t = t0 + τpulse). The rise rate 1/τrise

calculated for pPL‖ → 0 is shown by the dotted curve.

figure 2 of [4]. Apart from the change of Mx, in numerical modelling for H⊥ = 14 T one uses
the spin degeneracy factor g = 1 (see equation (1)).

Numerical simulations of the thermalization and PL dynamics allow us to clarify the
origin of the PL-jump. At the end of the pump pulse, the exciton temperature T (t =
t0 + τpulse) = Tpulse is still much higher than Tb = 50 mK and approaches a steady-state
value, if τpulse → ∞ (see figure 6(d)). The latter value refers to the steady-state concentration,
nmax

2d (τpulse → ∞) → �τopt, and is due to a balance between injected and thermalized energies.
In other words, incoming, hot indirect excitons effectively heat the excitonic system. In the
inset of figure 5, the calculated values of Tpulse are plotted against nmax

2d for τpulse = 47 ns: Tpulse

is about 2.5 K for nmax
2d � 5 × 1010 cm−2 and increases to 2.8 K for nmax

2d = 1011 cm−2. Right
after the trailing edge of the excitation pulse, the exciton temperature starts to decrease rapidly
from T = Tpulse. As a result, the optical lifetime τopt decreases (see figure 6(b)), due to more
efficient population of the low-energy optically-active excitonic states, and gives rise to the
rapid increase of IPL, i.e. to the PL-jump. Now we need to realize how strongly BE statistics
contribute to this nearly classical scenario.

While all the optically-active low-energy states |p‖| � k0 contribute to the total optical
decay of QW excitons (see equation (10)), the PL signal is observed in the normal, z-direction
within a collection angle 2α. In order to model the PL-jump contrast, δPL = [I max

PL (t =
t0 + τpulse + tmax) − IPL(t = t0 + τpulse)]/IPL(t = t0 + τpulse), observed in the experiments [2, 3],
in the numerical evaluations of IPL we assume that the PL signal is collected from the states
|p‖| � 0.77k0. This corresponds to α � 50◦ and gives δPL � 1–2 (see the inset of figure 5),
similar to the observed values of δPL. Here tmax � 6–7 ns is the delay time after the pump pulse,
when the maximum PL signal occurs. For the collection angle 2α → 0, when the ground-state
occupation number NE=0 is directly probed, the PL-jump contrast increases from δPL � 3
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Figure 6. Relaxation and photoluminescence kinetics of indirect excitons calculated with
equations (17). The generation rate of indirect excitons by the rectangular pump pulse is
� = 1.3 × 109 cm−2 ns−1, and the bath temperature is Tb = 50 mK. The other characteristics of
the excitation pulse and parameters of the GaAs structure are the same as for figure 5. The magnetic
field H⊥ = 0 (solid curves) and H⊥ = 14 T (dashed curves): (a) n2d = n2d(t), (b) τopt = τopt(t),
(c) NE=0 = NE=0(t) and (d) T = T (t).

for nmax
2d � 109 cm−2 towards δPL � 7 for nmax

2d � 3 × 1010 cm−2. The latter values of δPL

are much higher than those detected in the experiments [2, 3]. In [3] the observed nonlinear
increase of the PL signal right after the pump pulse is attributed to bosonic stimulation of
the scattering of indirect excitons into the highly populated ground-state mode p‖ = 0. In
the inset of figure 5 we plot the rise rate of the PL signal, 1/τrise = [d ln(IPL)/dt]|t=t0+τpulse ,
against nmax

2d for α = 50◦ (solid curve) and α → 0 (dotted curve). The calculations are done
with equations (17). According to the plot (see the inset of figure 5), the rise rate 1/τrise is
nearly independent of nmax

2d for the values 109 cm−2 � nmax
2d � 3 × 1010 cm−2, which are

used in the experiments [2, 3]. With still further increase of nmax
2d , the nonlinear behaviour

starts to develop so that 1/τrise increases by a factor 3 (for α → 0) or 1.4 (for α = 50◦) for
nmax

2d � 1.5 × 1011 cm−2.
Thus we conclude that the observed strongly nonlinear increase of 1/τrise with increasing

nmax
2d cannot be explained by bosonic stimulation of the scattering processes into the ground-

state mode. The bosonic stimulation effect refers to the ‘explosive’ population of the ground-
state mode, when T → 0 and kBT0/E0 � 1 (see equation (9)). The above conditions do not
hold for nmax

2d � 3 × 1010 cm−2. The PL-jump is mainly due to classical cooling of indirect
excitons right after the trailing edge of the rectangular excitation pulse. In the presence of the
continuous optical decay of indirect excitons, nonclassical population of the low-energy states
cannot effectively build up: Nmax

E=0 � 5.5 for nmax
2d = 2.87 × 1010 cm−2 and Nmax

E=0 � 122.7 for
nmax

2d = 9.51 × 1010 cm−2 (see figures 7 and 6(c)). Note that these values of Nmax
E=0 are much

less than the typical values of NE=0(t) calculated with equation (4) for 1/τopt = 0 and nearly
identical conditions (see figure 2).

Numerical simulations of the thermalization and photoluminescence dynamics with
equations (17) yield a strong decrease of the PL-jump contrast, δPL, with increasing H⊥
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Figure 7. Population dynamics of the ground-state mode, NE=0 = NE=0(t), calculated with
equations (17) for nmax

2d � 2.87 × 1010 cm−2 (� = 1.3 × 109 cm−2 ns−1, dashed curve) and
nmax

2d � 9.51 × 1010 cm−2 (� = 4.8 × 109 cm−2 ns−1, solid curve). The other parameters are the
same as for figure 5. For comparison, NE=0 = NE=0(t) calculated with no cooling effect due to
the optical evaporation (in equations (17) and (18) one puts ST = 0 for t � t0 + τpulse) is shown by
the dash–dotted curve.

(see figure 6(c)) and/or increasing Tb, in complete agreement with the experimental
results [2, 3]. However, the dependence of δPL upon nmax

2d , i.e. upon the pump intensity
�, is extremely weak for 109 cm−2 � nmax

2d � 3 × 1010 cm−2 (see the inset of figure 5),
in sharp contrast with observations [2, 3] of complete disappearance of the PL-jump at
nmax

2d � 109 cm−2. Note that the persistence of the PL-jump even for very low nmax
2d , according

to the numerical calculations with equations (17), is another manifestation of the classical
character of the PL-jump phenomenon.

Both contradictions between the experimental results and numerical modelling with
equations (17), discussed above for the density range 109 cm−2 � nmax

2d � 3 × 1010 cm−2,
i.e. (i) strongly nonlinear increase of 1/τrise with nmax

2d (experiment) against 1/τrise nearly
independent of nmax

2d (theory) and (ii) complete disappearance of the PL-jump for nmax
2d �

109 cm−2 (experiment) against a well-developed PL-jump with δPL � 2 for the same
concentration of indirect excitons (theory), can naturally be explained by the screening effect
discussed in section 4. Indeed, for low concentrations of indirect excitons,n2d ∼ 109 cm−2, the
mean-field potential responsible for the screening effect is weak, Umf = u0n2d ∼ 0.1–0.2 meV.
The latter value is much less than a typical amplitude of the in-plane random potential
UQW = Urand(r‖): in high-quality GaAs coupled QWs one has |Urand(r‖)−〈Urand〉| � 0.5 meV.
Thus for n2d ∼ 109 cm−2 the low-energy indirect excitons are localized, i.e. the corresponding
density of states cannot be approximated by the step-function [(2Mx)/(π h̄2)]�(E) with a
sharp edge at zero energy. The Gaussian-like density of disorder-induced low-energy localized
states with no well-defined energy minimum effectively suppresses the PL-jump effect. The
model used in our study is not applicable to this case: a more adequate description of the
thermalization and PL kinetics deals with phonon-assisted hopping between the localized
states, the PL Stokes shift, etc [18, 19]. In the meantime, as we have already discussed in
section 4, for n2d � 1010 cm−2 the narrowing effect is well-developed. In this case Urand is
completely screened by dipole–dipole interacting indirect excitons, so that our approach is
relevant to model the experimental data. Thus we explain the observed strong increase of the
PL rise rate, 1/τrise, and the PL-jump contrast, δPL, with increasing nmax

2d by a gradual building
up of the narrowing effect, rather than by the bosonic stimulation effect.
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6. Heating and cooling of indirect excitons due to the optical evaporation

Evaporative cooling or heating of indirect excitons is due to the resonant optical decay of
indirect excitons in coupled QWs. In contrast with the evaporative cooling schemes designed
and used in atomic optics in order to remove high-energy atoms from magnetic traps [20, 21],
the optical evaporation of QW excitons is an inherent process, which deals with the low-energy
particles, 0 � E � Eγ (see figure 1), from the radiative zone |p‖| � k0. In the presence of a
high-intensity pump pulse, the incoming, photogenerated particles effectively heat the system
of indirect excitons, as was discussed in section 5. This process absolutely dominates over the
optical decay of low-energy indirect excitons, so that ST > 0 is determined by the first term
∝�T0 in the numerator of equation (18). After the pump pulse, however, the thermalization
kinetics is affected by the resonant optical decay of indirect excitons. In this case, i.e. for
t � t0 + τpulse, �T0 = 0 and ST is given by the second term in equation (18). Both signs of
ST can be realized: ST < 0 (ST > 0) corresponds to evaporative cooling (heating) of indirect
excitons. Note that in our first modelling of the PL dynamics [3] this mechanism has not been
considered.

In order to analyse the influence of the optical evaporation on the thermalization kinetics
of indirect excitons, we compare an average thermal energy per particle, ε

(2d)

kin = 〈E〉 ≡
〈(h̄2 p2

‖)/(2Mx)〉, and average energy per particle, removed from the system due to the optical

decay, ε
(2d)
opt :

ε
(2d)

kin = T 2

T0
I1(T, T0) and ε

(2d)
opt = Eγ

τopt

τE
opt

, (21)

where the integral I1, τopt and τE
opt are given by equations (19), (10) and (20), respectively.

For Maxwell–Boltzmann distributed excitons, when kBT is much larger than kBT0 and
Eγ , equations (21) yield

ε
(2d)

kin = kBT

(
1 − 1

4

T0

T

)
� kBT and ε

(2d)
opt = 3

5 Eγ . (22)

Thus one has ε
(2d)

kin � ε
(2d)
opt , i.e. the optical decay of low-energy QW excitons with the following

re-thermalization (re-equilibration) process, due to exciton–exciton scattering, results in a net
heating effect. In this case, in equations (17) ST is positive. Because only a very small fraction
of indirect excitons decay into the bulk photon modes, the heating effect is weak. For example,
for nmax

2d = 3.7 × 1010 cm−2 and Tb = 4 K the heating effect results in �T � 6.4 mK, and for
Tb = 1.6 K and nmax

2d = 2.9 × 1010 cm−2 one estimates �T � 0.016 K.
For a quantum degenerate quasi-2D gas of indirect excitons, when kBT is much smaller

than kBT0 and Eγ , equations (21) give

ε
(2d)

kin � ε
(2d)
opt � π2

6
kB

T 2

T0
. (23)

In this case one has a net cooling effect, and ST in equations (17) is negative. According to
equation (23), ε(2d)

kin � ε
(2d)
opt , so that the variation δ(T 2/T0) is equal to zero. Thus δn2d < 0, due

to the optical decay, results in δT < 0. For T � T0, Eγ /kB nearly all the indirect excitons
are accumulated in the radiative zone |p‖| � k0, i.e. they continuously decay into the bulk
photon modes. However, an average decay rate of L- and T-polarized excitons increases with
increasing p‖ from 0 towards k0. In other words, one has a more effective optical removal of
‘high-energy’ indirect excitons in comparison with the optical decay of ground-state excitons.
This is the underlying physical picture of the cooling effect. In order to illustrate an efficiency of
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Figure 8. Thermalization dynamics, i.e. the exciton temperature T = T (t), after the excitation
pulse (see also figure 6(d)). The parameters used in the numerical calculations with equations (17)
are the same as for figure 6. The cooling (heating) effect due to the optical evaporation of indirect
excitons: H⊥ = 0 (H⊥ = 14 T). For comparison, T = T (t) calculated with no influence of the
optical decay on the thermalization dynamics (in equations (17) and (18) one puts ST = 0 for
t � t0 + τpulse) is shown by the dashed curves.

the evaporative optical cooling effect, in figure 7 we plot the population dynamics of the ground-
state mode, NE=0 = NE=0(t), calculated with and without the ST-term in equations (17) for
nmax

2d = 9.5 × 1011 cm−2 and Tb = 0.05 K.
By applying a strong magnetic field H⊥ one can change the exciton in-plane mass Mx,

and, therefore, decrease Eγ ∝ 1/Mx. The thermalization dynamics after the pump pulse,
i.e. for t � t0 + τpulse, are plotted in figure 8 for H⊥ = 0 and H⊥ = 14 T. The parameters used
in the calculations with equations (17) are the same as those used for figure 6. For comparison,
T = T (t) calculated with no evaporative heating or cooling (ST = 0) is also shown. As
one can see from figure 8, the evaporative optical cooling effect, which occurs at H⊥ = 0,
changes into effective heating at H⊥ = 14 T. In the latter case, the evaporative optical heating
effect is very strong: the exciton temperature stabilizes at T � 0.58 K � Tb = 0.05 K.
This is because by applying H⊥ one reduces Eγ to Eγ (H⊥ = 14 T) � 14 µeV, so that
Eγ (H⊥ = 14 T)/kB � 0.17 K becomes much less than T � 1.25 K and T0 � 0.86 K at the
end of the excitation pulse (see figure 6).

7. Conclusions

In this paper we have analysed and numerically simulated the thermalization and
photoluminescence dynamics of indirect excitons in GaAs/AlGaAs coupled QWs at very
low bath temperature, Tb → 0, aiming to model the data of recent optical experiments [3]
performed at extremely low cryostat temperature, Tb = 50 mK. The following conclusions
summarize our study.

(i) The observed PL-jump cannot unambiguously be attributed to bosonic stimulation of the
scattering processes into the ground-state mode p‖ = 0. According to our calculations, for
the concentrations nmax

2d � 3 × 1010 cm−2, relevant to the experiments [2, 3], the PL-jump
is mainly due to classical cooling of indirect excitons right after the trailing edge of the
rectangular excitation pulse.

(ii) The narrowing effect, i.e. an effective screening of the in-plane disorder-induced random
potential UQW by dipole–dipole interacting indirect excitons, naturally explains the
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strongly nonlinear dependence of the PL rise time, τrise = τrise(nmax
2d ), and PL-jump

contrast, δPL = δPL(nmax
2d ), observed for 109 cm−2 � nmax

2d � 3 × 1010 cm−2.
(iii) In the presence of classical and quantum slowing down of the thermalization processes and

continuous resonant optical decay of indirect excitons, the maximum occupation numbers
of the ground-state mode are still rather small, NE=0 ∼ 10 for nmax

2d � 3 × 1010 cm−2

and NE=0 ∼ 100 for nmax
2d � 1011 cm−2. While the thermalization and PL dynamics

are already affected by nonclassical statistics, the above values of NE=0 are probably too
small to initiate the BEC or BEC-like phase transition.

(iv) Optical evaporation of low-energy indirect excitons strongly influences the thermalization
kinetics. The optical decay results in the heating of QW excitons, if kBT � Eγ and kBT0,
and in the effective cooling, if kBT � Eγ and kBT0.

The relaxation thermodynamics used in our analysis (see equations (4) and (17)) still gives
a simplified description of the thermalization kinetics of indirect excitons. A first-principle
numerical modelling within a quantum Boltzmann equation, which explicitly includes both QW
exciton—QW exciton and QW exciton—bulk LA-phonon scattering processes, is in progress
and will be published elsewhere [22].
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